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FOREWORD 

The Software Engineering Laboratory(SEL) is an organization 
sponsored by the National Aeronautics and Space Administra- 
tion/Goddard Space Flight Center (NASA/GSFC) and created for 
the purpose of investigating the effectiveness of software 
engineering technologies when applied to the development of 
applications software. The SEL was created in 1977 and has 
three primary organizational members: 

NASAIGSFC, Systems Development Branch 
University of Maryland, Computer Sciences Department 
Computer Sciences Corporation, Flight Systems Operation 

The goals of the SEL are (1) to understand the software de- 
velopment process in the GSFC environment; (2) to measure 
the effect of various methodologies, tools, and models on 
this process; and ( 3 )  to identify and then to apply success- 
ful development practices. The activities, findings, and 
recommendations of the SEL are recorded in the Software 
Engineering Laboratory Series, a continuing series of 
reports that includes this document. 

The primary authors of this document are 

Sara Godfrey (Goddard Space Flight Center) 
Carolyn Brophy (University of Maryland) 

Other contributors include 

William Agresti (Computer Sciences Corporation) 
Edwin Seidewitz, Michael Stark (Goddard Space Flight 

GRODY Design Team 
Center) 

Single copies of this document can be obtained by writing to 

Systems Development Branch 
Code 552 
Goddard Space Flight Center 
Greenbelt, Maryland 20771 
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ABSTRACT 

The results of a case study to analyze the approach taken 
and the lessons learned during the design of the Gamma Ray 
Observatory Dynamics Simulator in Ada' (GRODY) are presented. 
Included are recommendations for defining the design phase 
and outlining the products that should be developed during 
this phase of the software development life cycle for future 
flight dynamics software systems developed in Ada. 

lAda is a registered trademark of the U.S. Government, Ada 
Joint Program Office. 
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EXECUTIVE SUMMARY 

During the past 2 years, a study has been conducted to 
determine the applicability of Ada for software development 
in the flight dynamics environment at the National Aeronau- 
tics and Space Administration/Goddard Space Flight Center , 

(NASA/GSFC), Greenbelt, Maryland. The primary objectives of 
this study are to determine the cost-effectiveness and feas- 
ibility of using Ada and to assess the effect of Ada on the 
flight dynamics environment. The study consists of parallel 
software development efforts to develop the Gamma Ray Ob- 
servatory Dynamics Simulator, with one team of developers 
using FORTRAN and another team using Ada. A third team co l -  
lects and assesses data from the two development efforts. 
The study is a joint project with participants from NASA/ 
GSFC, Computer Sciences Corporation, and the University of 
Maryland. 

This document concentrates on the design phase of the devel- 
opment effort, during which the following conclusions were 
reached concerning the use of Ada as a development language 
for flight dynamics applications: 

0 Training is essential, not only training in Ada, 
but also in the design methodologies applicable for 
Ada. Managers and reviewers also need some train- 
ing in design methodology. 

0 The specifications document should be language neu- 
tral and should not constrain the design. 

0 The design methodology should be chosen as early as 
possible and should be suitable f o r  expressing Ada 
features. During this study, object diagram meth- 
odology seemed to be extremely useful. 

vii 
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0 Documenting an Ada design requires different design 
products than are used to describe a FORTRAN de- 
sign. Object diagrams and compilable design ele- 
ments seemed very useful for representing and 
validating the design. 

0 Designing with Ada seems to require a longer design 
phase, with reviews occurring later in an Ada de- 
sign phase than they would in a FORTRAN design 
phase. 

0 The changeover to Ada will increase design cost due 
to the loss of the previous design legacy. 

Further study is continuing to assess the effect of using 
Ada during other life-cycle phases and throughout the devel- 
opment life cycle of other projects. 

viii 
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SECTION 1 - INTRODUCTION AND BACKGROUND 

This document is the second in a planned series of five doc- 
uments describing various aspects of developing a dynamics 
simulator to be used as part of the ground support system 
for the Gamma Ray Observatory (GRO) satellite. This proj- 
ect, the Gamma Ray Observatory Dynamics Simulator in Ada 
(GRODY), is significant because a corresponding version is 
being developed in FORTRAN. Analysis of the two projects 
will provide insight into the implications of developing 
flight dynamics software in Ada versus FORTRAN--the usual 
development language in the past. This document concen- 
trates on the design phase of the project. 

Section 1 provides background material on GRODY, dynamics 
simulators in general, and the phases of the software devel- 
opment life cycle. Section 2 details the approach taken 
during the design process. It describes the major activi- 
ties that occurred during the GRODY design effort, the meth- 
odologies investigated, the design documentation, and the 
staffing profile for the design effort. Section 3 discusses 
the success of various aspects of the design approach and 
offers some insight into possibie changes in this approach. 
Section 4 briefly summarizes the lessons learned in the de- 
sign process and presents some recommendations for conduct- 
ing the design effort in future Ada development projects. 

1.1 GRODY PROJECT DESCRIPTION 

The GRODY project is an experiment in the effectiveness of 
Ada for flight dynamics software development. The experi- 
ment, which is being conducted at the National Aeronautics 
and Space Administration/Goddard Space Flight Center (NASA/ 
GSFC), features the parallel development of software in 
FORTRAN and Ada. Supporting this Ada experiment are partic- 
ipants from three distinct installations: NASAIGSFC, 
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Computer Sciences Corporation (CSC), and the University of 
Maryland. These people are divided into three functional 
groups: the FORTRAN development team, which is developing a 
GRO dynamics simulator under the standard methodology used 
in the flight dynamics environment (References 1 and 2); the 
Ada development team, which is applying modified design 
techniques (References 3 and 4 )  and using the Ada develop- 
ment language; and a study group, which is directing the 
experiments. Data on both projects are being collected and 
stored on the Software Engineering Laboratory (SEL) data- 
base. Figure 1-1 illustrates this organizational struc- 
ture. Work on both dynamics simulators began in January 
1985, with the FORTRAN team beginning a typical development 
cycle and the Ada development team, a training phase. 

A 

STUDY TEAM (5) 

b ASSESSMENTS DEFINE PROJECT A TRAINING h 
DEVELOPMENT 

I ADATEAM(7) 

DEVELOP PROJECT 
USING ADA 

(GSFC, CSC) 

(GSFC, CSC, U. MD) 

SOWARE 

FORTRAN TEAM (7) 

DEVELOP AND DELIVER 
GRO DYNAMICS 

SIMULATOR 
(GSFC, CSC) 

ADA 
OOD 
PAM 
CSM 

L -  , 1 1 

OPERATIONAL 
SOWARE 

Figure 1-1. Ada Experiment Organization 

Because the FORTRAN development team is responsible for the 
actual software that will be used for GRO mission support, 
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they are more constrained by their schedule than the Ada 
team. An additional requirement for the FORTRAN'team is to 
develop one portion of the software so that it can later be 
integrated into a real-time piece of software to be used for 
simulation purposes. With these two exceptions, the two 
teams are developing functionally identical software systems. 

COMPONENT MEASURED 

The FORTRAN development effort is being carried out using a 
DEC VAX-11/780 computer; the Ada' development is being done 
on a DEC VAX-8600. Early estimates of the size of the proj- 
ect indicated that the completed system (for both the FORTRAN 
and the Ada developments) was expected to be approximately 
40,000 source lines' of code (SLOC). Later estimates for 
the Ada development place the system size in the range of 
110,000 to 120,000 SLOC. Estimates for executable SLOC in 
the Ada system are 40,000 to 45,000; the completed FORTRAN 
system contains 25,000 executable SLOC. Table 1-1 lists 
size comparison information for the two projects. Additional 
information on the experiment is presented in Reference 3 .  

FORTRAN 

Table 1-1. Project Size Comparisons 

TOTAL LINES OF CODE 

TOTAL COMMENTS 

EXECUTABLE LINES 

BLANK LINES 

REUSED LINES 

45,000 SLOC 

19,000 SLOC 

25,000 SLOC 

MINIMAL 

16,000 SLOC(36'Xo) 

40,000 SLOC 

27,000 SLOC 

1 10,000 SLOC 

43,000 SLOC 

r- 
aD 
9 

2.000 SLOC(2"!0) I 3 
a ESTIMATED MAY 1,1987 (BASED ON CODE 80% COMPLETE). 

IA source line of code is an 80-byte record processible by 
the computer. It therefore includes comments, executable 
'code, and nonexecutable code such as type statements, block 
data statements, and dimension statements for FORTRAN or 
declarations and blank lines for Ada. 
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1.2 GRODY OBJECTIVES ’ 

The overall goal of the Ada/FORTRAN software development 
project is to develop insight into the applicability of the 
Ada development methodology and language in the NASA soft- 
ware environment. Several objectives have been established 
as a mechanism toward attaining this goal (Reference 3 ) .  

The primary one is to determine the cost-effectiveness and 
feasibility of using Ada to develop flight dynamics software 
and to assess the effect of Ada on the flight dynamics en- 
vironment. A related objective is to determine whether 
present development methodologies in use within the flight 
dynamics environment are suitable for Ada as is or whether 
they need to be adapted for Ada and to investigate other 
methodologies related to the use of Ada. For example, is 
the standard development life cycle (Section 1.5) being used 
on the FORTRAN development equally suitable for an Ada de- 
velopment? wnicn design methodology is best suited for this 
type of Ada development? 

Because reusability is an important factor for cost-effective 
software development, this experiment will also try to de- 
velop approaches for maximum reusability when Ada is being 
used for implementation. A major portion of the software 
developed in the flight dynamics environment is reused; be- 
cause Ada is designed to facilitate reusability, the methods 
developed should maximize this feature. 

Other factors being assessed throughout the GRODY project 
are the differences in reliability and maintainability be- 
tween a FORTRAN implementation and one in Ada. Obviously, a 
system that is more reliable (i.e., has fewer errors per 
~ O O , O O O  SLOC) will cost less to maintain.’ Similarly, an 

Isoftware maintenance consists of two activities occurring 
after the software is delivered: correction of errors dis- 
covered during operational use of the software and enhance- 
ments of the software to add new cagability. 
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implementation that is easier to correct and enhance will be 
less costly to maintain. Will it be less costly to maintain 
the Ada or the FORTRAN dynamics simulator? Which will be 
more reliable? These questions are particularly important, 
considering that the annual cost of maintenance ranges from 
10 to 35 percent of the original development cost in staff- 
hours (Reference 2). 

Ada is required as the implementation language for the Space 
Station, an extremely large, complex, long-term project. 
One objective of the GRODY experiment is to develop a set of 
software measures that will be helpful when planning for the 
use of Ada during the Space Station project. Among these 
measures are size estimates of an Ada implementation and the 
expected productivity during the implementation of a scien- 
tific application. .Useful information can also be gained 
about the reliability and maintainability--the effort re- 
quire2 to change and repair t h e  software--when Ada has been 
used for the implementation. Most of these software meas- 
ures are well defined for FORTRAN implementations, but not 
much similar information exists for scientific applications 
in Ada. 

Another factor of interest with the longer term projects 
such as the Space Station is the issue of portability. Can 
a particular implementation be moved from one machine to 
another with ease? Certainly, on long-term projects, the 
rehosting of the software to a new computer system is a 
likely occurrence, and a more portable implementation would 
reduce these rehosting costs. 

These objectives were carefully considered in every phase of 
the GRODY project. Some of the objectives influenced deci- 
sions made during the design phase as well as the approach 
taken during the design phase. 
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1.3 GENERAL DESCRIPTION OF A DYNAMICS SIMULATOR 

A general description of a dynamics simulator is included 
here to acquaint the reader with the type of design problem 
that confronted both development teams. A general knowledge 
of the type of problem becomes important later when the ad- 
vantages and shortcomings of the different design methodolo- 
gies are discussed. 

The purpose of a dynamics simulator is to test and evaluate 
the onboard attitude control logic under conditions that 
simulate the expected in-flight environment as much as pos- 
sible. The simulator can be considered a control system 
problem, beginning with an onboard computer (OBC) model that 
uses sensor data to compute an estimated attitude. Control 
laws are then modeled to generate commands to the attitude 
hardware (actuators) to reduce the attitude error. A truth 
model portion of the simulator simulates the response of the 
attitude hardware and generates a true attitude for the 
spacecraft. Sensor data corresponding to the true attitude 
are produced by the truth model and sent back to the OBC 
model (Figure 1-2). 

1.4 THE TWO DESIGN TEAMS 

The two design teams were approximately the same size, with 
7 people on the Ada team and from 7 to 10 (average 9) on the 
FORTRAN team. The experience of the two teams was, however, 
somewhat different. 
general, with more years of software development experience 
and a wider range of application experience. 
they were familiar with'more programming languages, an aver- 
age of seven compared to three for the FORTRAN team. On the 
other hand, the FORTRAN team were more experienced in the de- 
velopment of dynamics simulators. About two-thirds of the 
FORTRAN team had previously developed a dynamics simulator 
compared to only about two-fifths of the Ada team (Table 1-2). 

The Ada team were more experienced in 

In addition, 
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Figure 1-2. A Dynamics Simulator 

Table 1-2. Team Profiles 

CHARACTERISTIC 

NUMBER OF LANGUAGES 
KNOWN (MEDIAN) 

TYPES OF APPLICATION 
EXPERIENCE (MEDIAN) 

YEARS OF SORWARE 
DEVELOPMENT EXPERIENCE 
(MEAN) 

FORTRAN TEAM 

3 

3 

4.8 

TEAM MEMBERS WITH 
DYNAMICS SIMULATOR 
EXPERIENCE 

1-7 

66% 

7 

4 

8.6 

43% 



1.5 DESIGN PROCESS WITHIN THE STANDARD SOFTWARE DEVELOPMENT 
LIFE CYCLE 

The standard software development life cycle used in the 
flight dynamics environment is described in Reference 1. A 
brief description of this life cycle and the products that 
are usually generated during each phase are presented here 
so that comparisons between the Ada and FORTRAN life cycles 
can be made. The life cycle described here was generated 
for use on software development projects using FORTRAN. The 
effect of using this life cycle when developing in Ada will 
be discussed later in this document. 

The standard life cycle can be divided into the following 
seven sequential phases: 

0 Requirements Analysis--During this phase, the de- 
veloper analyzes a document that contains the functional 
specifications and requirements to assess the completeness 
and feasibility of the requirements and to make an initial 
estimate of the-required resources. The results of this 
analysis are summarized in a requirements analysis report. 

0 Preliminary Design--In this phase, the design proc- 
ess is begun by organizing the requirements i n t o  functional 
capabilities and distributing these into subsystems. 

0 Detailed Design--In this phase, the design that was 
outlined during the preliminary design phase is expanded to 
describe all aspects of the system. 

0 Implementation--This phase consists of coding new 
modules from the design specifications, revising old code to 
meet new requirements, and unit-testing to ensure that each 
module functions properly. * 

0 System Testing--During this phase, the completely 
integrated system produced during the implementation phase 
is tested according to a test plan (also generated during 
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the implementation phase) to verify that all required system 
capabilities function properly. 

0 Acceptance Testing--The testing during this phase 
is done by an independent team to ensure that the system 
meets all requirements. 

0 Maintenance and Operation--At this point, the soft- 
ware becomes the responsibility of a maintenance and opera- 
tions group who implement any further enhancements and any 
error corrections that might be necessary. 

The actual design process begins with a top-down approach to 
decompose the requirements. During the preliminary design 
phase, the development team organize the requirements into 
functional capabilities and then specify the major func- 
tional subsystems and their input/output interfaces and 
processing modes. The design is refined to a hierarchical 
level of two levels below the subsystem driver. During this 
phase, an initial determination is made of the available 
reusable code. This functional design of the system is doc- 
umented in the preliminary design report and is presented 
for review in a preliminary design review (PDR). Responses 
to coiiimer;ts and criticisms received at the PDR are iiicorpo- 
rated into the functional design contained in the final pre- 
liminary design report. This phase typically requires 
10 percent of the time and 10 to 15 percent of the total 
effort required for the entire development cycle in a FORTRAN 
implementation (Reference 2). 

During the detailed design phase, the functional design gen- 
erated during the preliminary design phase is expanded to 
produce "code-to" specifications for the system. These in- 
clude functional and procedural descriptions of the system, 
data flow descriptions, complete input/output file descrip- 
tions, operational procedures, descriptions of each module, 
and descriptions of all internal interfaces between modules. 

0448  

1-9 



Following the pattern of the preliminary design phase, these 
design details are documented in a detailed design document 
and presented in a critical design review ( C D R ) .  

responses to the comments received at the CDR are incorpo- 
rated into the detailed design contained in the final de- 
tailed design document. This phase typically requires 
15 percent of the time and effort required for the entire 
development cycle in a FORTRAN implementation. 

Again, 
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SECTION 2 - DESIGN PROCESS APPROACH 
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As noted earlier, the FORTRAN team was able to move into the 
design phase of the software life cycle immediately after 
the requirements analysis phase, following the standard 
pattern for software development in the flight dynamics en- 
vironment. A specifications and requirements document (Ref- 
erence 5) provided the functional requirements and actually 
contained the highest level design for the FORTRAN develop- 
ment; the document is organized into major subsystems corre- 
sponding to the partitioning used for the last several 
successful simulator projects. The FORTRAN team was able to 
begin the design process by using this subsystem partition- 
ing and then refining the design to include the lower level 
routines. Following this design pattern enabled the FORTRAN 
team to make the most use of code used successfully for 
other simulator projects, since the overall design nf t h e  

FORTRAN system is similar t o  previous simulators. It also 
had the advantage of clarifying the interfaces between sub- 
systems early in the project. 

. 

In contrast, the Ada team needed to begin their design proc- 
ess with a period of training, including training in design 
methodologies. The Ada team also discovered that several 
design issues began to surface during the requirements anal- 
ysis phase, causing their requirements analysis phase to 
include some activities that are different from those usually 
undertaken during that phase. 

2.1 DESIGN CONSIDERATIONS 

2.1.1 FORTRAN DESIGN DRIVERS 

From the beginning of the design phase, several factors were 
very influential in the development of the FORTRAN design. 
First, there was a large body of existing code for dynamics 
simulators that could possibly be reused--thus saving 
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development time and cost--if the design for the simulator 
was similar to previous ones. In addition, the FORTRAN team 
developing the design were very experienced with previous 
dynamics simulators and were familiar with the legacy of 
design success using particular interfaces and subsystem 
partitioning. The requirements document was organized into 
sections consistent with the previously successful subsystem 
partitioning, which further encouraged the FORTRAN team to 
reuse the previous design patterns. Finally, the FORTRAN 
team had more schedule pressure than the Ada team because 
the FORTRAN system was considered the real, operational 
software and thus needed to be ready to support the mission 
on schedule. 

2.1.2 ADA DESIGN DRIVERS 

One goal of the Ada team was to develop a dynamics simulator 
design that would take full advantage of the features Ada 
offers. To accomplish this, the Ada team needed thorQugh 
training in Ada and the Ada design methods, that is, those 
methods that encourage the full use of Ada's features. 
Although the Ada team consisted of very experienced devel- 
opers, who were familiar with a wide variety of languages, 
Ada and its design methods were new to them. 

Because there was no existing code in Ada that could be 
used, there was no tendency to adopt a particular design 
solely to maximize the amount of reusable code. Reusability 
was, however, still a factor influencing the design because 
another goal was to produce a design that would encourage 
the development of modules that could be reused in future 
Ada development efforts. 

The Ada team had a strong desire to develop an independent 
design, one that was not influenced by the design of pre- 
vious dynamics simulators. To do this, they needed the 
opportunity to work directly from the system requirements, 
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and it was important that the system requirements be lan- 
guage independent. One factor in favor of an independent 
design from the Ada team was their inexperience with the 
specific task of developing a dynamics simulator. 

Finally, the Ada team needed time if they were to develop 
this new, independent design. Although the Ada team had a 
specific development schedule, they were not constrained by 
this schedule as were the FORTRAN team. They had the luxury 
of spending some extra time in areas where it was needed, 
such as in training, experimenting with different methodolo- 
gies, and developing new methodologies when none of the 
existing ones seemed suitable. 

2.2 ADA TEAM TRAINING 

Because the Ada team members were new to Ada and its design 
methods, their software development cycle began with a 
training phase. The training phase was c a r e f i ~ l l y  designed 
to give the team a good working knowledge of Ada and its 
features and to acquaint them with several useful design 
methodologies for applications to be implemented in Ada. 
Two months of full-time effort were devoted to training each 
xember of the Ada team, with the effort spread over a 6-month 
period (Table 2-1). 

The training plan was carefully formulated by the experiment 
participants from the University of Maryland and consisted 
of several different types of activities. The resources 
used included an Ada textbook, an Ada language reference 
manual, and videotapes on the specifics of Ada. The video- 
tapes were viewed in group sessions, followed by a discus- 
sion period, and then enhanced by reading and coding 
assignments. Toward the end of this language training, lec- 
tures on Ada-related design methods were presented. During 
these lectures, emphasis was placed on learning Grady Booch's 
Object-Oriented Design (Section 2.4.1), George Cherry's 

- 
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Process Abstract Methodology for Embedded Large Applications 
(Section 2.4.2), and general software engineering methodol- 
ogy as well. 

Table 2-1. Project Efforta Comparisons 

PHASE 

TRAINING 

REQUIREMENTS ANALYSIS 

 DESIGN^ 

CODVTEST 

SYSTEM TEST 

ACCEPTANCE TEST 

STAFF-HOURS 

FORTRAN 

0 

972 

3227 

4734 

2955 

21 70 

ADA 

3225 

1393 

3881 

1037s 

d 

d 

DURATION IN MONTHS 

FORTRAN 

0.0 

1.5 

4.0 

6.0 

5.0 

5.0 

ADA 

6.0 

2.0 

6.0 

16.0 

NIA 

NIA 

arrrA-s .- -. . -- -crrun I ID DUM ut I tCHNiCAi WNAGEMENT, AND SUPPORT HOURS REPORTED 
ON SEL RESOURCE SUMMARY FORMS. 

 HOURS UP TO CDR. 

~WPECTED MAJOR SAVINGS WITH ADA. 
CACTUAL HOURS THROUGH JUNE 1,1987; ESTIMATED FOR JUNE 1 TO JULY 1. 

The final training activity consisted of the design and im- 
plementation of a practice problem. This training problem 
was a team effort and consisted of nearly 6000 lines of code. 
More detailed information on the Ada training program and 
recommendations for the design of future Ada training pro- 
grams are presented in References 6 and 7. 

2.3 EFFECT OF REOUIREMENTS DOCUMENT ON DESIGN 

The Ada team tried to begin the requirements analysis phase 
using the same approach taken by the FORTRAN team. They 
quickly realized that the requirements and specifications 
document (Reference 5 )  actually contained some of the high- 
level design used previously on dynamics simulator projects 
developed in FORTRAN. Because the team wanted to develop 
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an independent design, one that would be particularly suit- 
able for an Ada development, they rewrote the specifications 
and requirements document using a specification approach 
called the Composite Specification Model (CSM) (Refer- 
ence 8 ) .  Team members had been given an introductory lec- 
ture on CSM during their training and had no particular 
problem in using this method. 

CSM allows a system to be represented from functional, dy- 
namic, and contextual views. Using CSM as a specification 
tool provided information on its suitability for specifying 
requirements typical of those encountered in the flight dy- 
namics environment. It also allowed the Ada team to become 
thoroughly familiar with the system requirements as they 
systematically analyzed them and reformulated them into the 
new specifications document (Reference 9). One feature of 
the new document was the description of functional process- 

language). 

ing iSi t o  pDL (program design 

The team felt that the new specifications document success- 
fully removed the bias toward a FORTRAN-like design by re- 
moving the inherited design features from the functional 
specification. They also felt they had gained a much better 
understanding of the system they were trying to develop. 
The requirements analysis report generated by the Ada team 
consisted of two parts: the rewritten requirements specifi- 
cation and a requirements analysis assessment report (Refer- 
ence 10). The requirements assessment report detailed such 
areas as incomplete requirements, external data interfaces, 
existing code that might be reused, and initial resource 
estimates. The generation of these two documents completed 
the requirements analysis phase f o r  the Ada team. During 
the requirements analysis phase, the Ada team spent 
8.9 staff-months of effort over a 2-month period; the 
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FORTRAN team Spent 6.2 staff-months of effort over a 6-week 
period (Table 2-1). 

2.4 DESIGN APPROACHES INVESTIGATED 

One of the objectives of the GRODY project was to investi- 
gate design methodologies that make effective use of Ada's 
features. Such methodologies use the so-called object- 
oriented approach, which means that objects are used as the 
basic unit of design instead of the traditional functional 
procedures. Previous FORTRAN designs used procedural ab- 
straction rather than the object-oriented approach. In pro- 
cedural abstraction, a particular subroutine can be thought 
of as a black box that provides a certain function and pro- 
duces a particular set of output values whenever it-is pro- 
vided with specific input values. For example, applying 
this to the dynamics simulator problem, the truth model can 
be considered a procedural abstraction that provides the 
function of computing the current attitude. Whenever it is 
given particular input values and actuator commands, it pro- 
vides the sensor data that correspond to that attitude state. 

Typically, there are also certain object-oriented elements 
in the FORTRAN design. For exariple, when the truth iiiodel. 
function provides the sensor data, the lower level routines 
are organized by objects so that the sensor data provided by 
a particular sensor (such as a fixed-head-star tracker) are 
modeled in a particular routine designed to provide just 
that data. Similarly, another routine would model the data 
from another type of sensor, such as a fine Sun sensor. 

To use Ada and its particular features (e.g., packages, in- 
formation hiding, and tasks) effectively, the Ada team wanted 
to use a methodology well suited for these features. They 
investigated several different methodologies and actually 
developed the top-level design for the dyna.mics simulator in 
three different object-oriented methodologies. Because of 

2-6 
0448 



time constraints, it was impossible to explore each of these 
methodologies in more depth. Also, because all the designs 
were being developed concurrently, it was extremely diffi- 
cult for the team to keep the design approaches completely 
separate. Even considering this difficulty, some fairly 
strong conclusions were reached about each of the method- 
ologies explored. The following subsections describe the 
different methodologies tried and the advantages and disad- 
vantages of each. 

2.4.1 BOOCH OBJECT-ORIENTED DESIGN 

The first object-oriented methodology used to approach the 
design of the dynamics simulator was developed by Grady 
Booch and is described in Reference 11. The usual applica- 
tion of Booch's design calls for translation of a textual 
specification into the design, using the technique of under- 
lining nouns and verbs in the specification. The nouns map 
into objects in the design, and the verbs map into object 
operations. Obviously, some discretion must be used when . 

choosing the nouns and verbs to be mapped into the design. 

The design notation uses rectangles to represent Ada pack- 
ages and parallelegrams tc represent tasks. Within each of 
these figures, there are two types of "windows": small rec- 
tangular windows to show visible procedures, functions, or 
entities and rounded windows to show visible data types. 
Hidden code is represented by blobs placed inside the fig- 
ures. Arrows leading from an area of code indicate that the 
code uses an operation or data type in another object. Fig- 
ure 2-1 is an example of Booch's design notation as it was 
applied to part of the dynamics simulator. 

The graphic notation of Booch's methodology is clear and 
very descriptive of system objects, their component objects, 
and the use of one object by another. It does not, however, 
show which specific object operation is used, and it has no 
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method for showing data flows between objects. There is 
also no way to indicate a hierarchical structure, which is 
necessary for any large system. 

The greatest drawback encountered with the Booch methodology 
was the technique for deriving the design from the specifi- 
cations. The method of underlining text portions works well 
if the specification can be written in a few paragraphs, but 
it becomes a monumental task if the specification is of any 
size or complexity. In addition, the method does not pro- 
vide any technique for deriving a design from a graphical 
specification. 

2.4.2 PROCESS ABSTRACTION METHOD 

Another methodology investigated by the Ada team was the 
Process Abstraction Method for Embedded Large Applications 
(PAMELA, or PAM for short). PAM was developed by George 
Cherry for use with real-time and embedded systems and is 
described in detail in Reference 12. 

With PAM'S design notation, processes are all concurrent 
objects and are represented by boxes. Arrows between the 
boxes represent rendezvous between processes. Labels on the 
arrows also provide a method for indicating data flow and 
some control information. Each process is marked either 
primitive (P) or nonprimitive (N). Primitive processes are 
Ada tasks, and nonprimitive processes are Ada packages that 
can be further decomposed until only primitive processes 
remain. Figure 2-2 is an example of this design notation. 
This decomposition allows a hierarchical structure to be 
represented using PAM, which is an advantage over Booch's 
methodology. The team also found that PAM provided a fair 
amount of guidance for constructing good processes. 

PAM seemed to be very effective for the design of a real-time 
system. GRODY, however, was not specified as a real-time 
application with concurrent processes, even though parts of 
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the system might be considered concurrent since GRODY models 
actions that occur in parallel in real life. Because the 
system is a simulation, it has no requirement for concurrent 
processes, except for the interaction the system has with 
the user. Thus, one interpretation of PAM'S principles 
would leave -large portions of the system represented as 
primitive processes with no method available for decomposing 
these into lower level entities. This problem limits the 
effective use of PAM for this type of application. 

The only advantage in designing GRODY in terms of concurrent 
processes is the. automatic scheduling of the sequence of 
process execution. This advantage is lost when considering 
the overhead of using Ada tasks-and making Ada rendezvous. 
GRODY is required to run on a purely sequential machine and 
to be implemented in VAX Ada, in which this overhead can be 
quite large. In a simulator like GRODY, this consideration 
is particularly important because the main loop is a large 
portion of the system and may be executed tens of thousands 

. of times per run. Obviously, such a performance degradation 
in this area could not be permitted. 

2 . 4 . 3  OBJECT DIAGRAMS 

The final methodology explored by the Ada team is one that 
the team had begun to develop during the design of the prac- 
tice training problem-. This approach tries to combine some 
of the best points of the previous design methodologies 
while expanding the approach so that it is flexible and gen- 
eral (References 13 and 1 4 ) .  

The notation of this object-oriented methodology has been 
named "object diagrams" and, as in the previous two nota- 
tions, boxes represent objects. The hierarchical structure 
of the system can be shown by decomposing each object into 
lower level objects. Arrows on the object diagrams repre- 
sent control flow or the use of an operation in the object 
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to which the arrow points. An object description lists op- 
eration names and the data flow between objects during each 
operation call. 

Object diagrams thus illustrate the control structure of the 
system, and the object descriptions define the data flow in 
the various operations. The object diagrams are drawn with 
the senior-level controlling objects at the top of the page 
and the junior-level controlled objects below them. This 
serves as a convenient mechanism for demonstrating system 
hierarchy. As in PAM, each object can be decomposed into 
lower level component objects. Figure 2-3 represents an 
early version of the GRODY system using object diagrams. 

The principles for constructing object diagrams are less 
explicit than those provided by the Booch methodology o r  
PAM. They are based on the general principles of informa- 
tion hiding, abstraction, and design hierarchy. Efforts by 
the Ada team.are in progress to outline these principles 
systematically to provide adequate guidance for designers 
attempting to use this methodology. Additional work is con- 
tinuing to develop a technique for constructing object dia- 
grams from a graphical specification (Reference 15). 

2 . 5  CHOICE OF DESIGN METHOD 

Of the three design methods explored during the preliminary 
design phase, only the object diagram methodology seemed 
complete enough to express the design of a complex system 
like a dynamics simulator. This methodology was therefore 
chosen to complete the preliminary design and to continue 
enhancing the design during the detailed design phase. 

A few problems were noted with the early version of the 
GRODY design that was developed during the design methodol- 
ogy comparison period. The strong coupling between some of 
the objects is not effectively shown by the design diagram 
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. in Figure 2-3. For example, there is a large set of param- 
eters hidden in the truth model object that are used by the 
user interface object because the user needs to access these 
parameters, modify them, and store them. Modifications were 
made to the notation during preliminary design so that these 
relations could be shown. In fact, the design methodology 
evolved throughout the entire design phase as the Ada team 
found better ways to express the design they were developing. 

2.6 DESIGN REVIEWS AND DESIGN PRODUCTS 

The Ada team tried to follow the standard pattern in the 
flight dynamics environment concerning design reviews. This 
pattern calls for a PDR to be held at a stage in the devel- 
opment when the top levels of design are well defined, the 
requirements are divided into functional objects, and the 
interfaces between these objects are developed. 

The FORTRAN team completed their preliminary design in about 
a month and a half and presented a PDR that included the 
usual design products for this phase. These included struc- 
ture charts of the subsystems showing two levels of routines 
below the subsystem driver, data flow diagrams showing the 
interfaces between the subsystems, and the display formats. 
Prologs and PDL were available for the routines identified 
in the structure charts. Table 2-1 compares the length of 
the phases and the effort expended during these phases. 

The Ada team had some difficulty deciding when they were 
actually ready to present the PDR because the clear guide- 
lines applied for a FORTRAN development were not exactly 
applicable for an Ada development. A PDR (Reference 16) was 
held about a month after the design effort began with the 
rewritten specifications. The high-level design for GRODY 
was presented in terms of object diagrams and their accom- 
panying operation dictionaries. As with the FORTRAN effort, 
the display formats were also presented. The team noted 
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that it was not meaningful (or even possible) to represent 
the Ada design with structure charts. 

The detailed design phase lasted about 2 months for the 
FORTRAN team and culminated in the CDR. This review de- 
scribed the lower level routines, data flow, internal in- 
terfaces between modules, input and output files, and 
operational procedures. These were described in the design 
products of structure charts, data flow diagrams, file for- 
mats, and operational scenarios. In addition, all of this 
information was compiled into a detailed design document. 
Prologs and PDL were produced for all modules. 

During the detailed design phase, the Ada team again had 
some difficulty in determining the appropriate time in de- 
velopment for the CDR. For example, the Ada team wanted to 
deyelop PDL in Ada, but this was very time consuming and 
tended to obscure the line between coding and design. After 
a 4-month period of detailed design work, the CDR was pre- 
sented. Some team members felt that this was an arbitrary 
point in the design phase and that there was still a great 
deal of design work to be done. Others felt they were 
better prepared than usual because they had gained such a 
thorough understanding of the system they were developing. 

The presentation at the CDR included object diagrams, opera- 
tional scenarios, display formats, and sample PDL. The PDL 
used by the team was Ada-like but was not actually the com- 
pilable Ada they had hoped to use. A special reference 
guide explaining the object diagram symbols was distributed 
at the review to help attendees understand the object dia- 
gram notation. Between the PDR and the CDR, the object dia- 
gram methodology had continued to evolve, resulting in a new 
notation being used for the CDR and the detailed design 
documents. 
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The detailed design was recorded in a detailed design docu- 
ment completed shortly after the review. This docuinent is 
being updated regularly during the implementation to ensure 
that it reflects the design actually being implemented. 
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SECTION 3.- LESSONS LEARNED 

Now that the design phase of the GRODY project has been com- 
pleted, it is possible to cite a number of areas where val- 
uable experience has been gained concerning the use of Ada 
on applications software in the flight dynamics environment 
(Reference 17). A number of questions concerning the use of 
Ada for this type of application have at least preliminary 
answers that will be addressed in this section. 

3.1 TRAINING AND EXPERIENCE 

3.1.1 EFFECT OF TEAM EXPERIENCE ON THE DESIGN 

Previous attempts to use Ada for scientific applications 
have usually resulted in an Ada system with a FORTRAN-like 
design (Reference 18). In the case of GRODY, the design 
generated by the Ada team looks very different from a FORTRAN 
design, attributed in part to several factors involving the 
team's experience. 

First, because the Ada teamwere experienced in many lan-' 
guages, they were not set into any particular design pattern 
that might have been learned by using just one language. 
This broad base of experience enabled them to view the de- 
sign problem from many different angles and to develop dif- 
ferent approaches toward the design of the system. 

Second, the Ada team were not experienced in using Ada, but 
they were very enthusiastic and eager to use all of Ada's 
advantages. This led to a sincere effort to develop an 
Ada-style design that would really test Ada's features in 
the flight dynamics environment. 

Third, the Ada team were not experienced in designing dy- 
namics simulators and thus were not biased by previous de- 
sign efforts to generate dynamics simulators in FORTRAN. 
The team as a whole had a broad experience base free from 
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bias toward a particular language and a positive, enthusias- 
tic attitude toward Ada. 

3.1.2 EFFECT OF TRAINING ON DESIGN PRODUCTION 

Obviously, when the goal is to produce a design using Ada's 
features to best advantage, it is essential that the design 
team be well acquainted with those features. As previously 
mentioned, the Ada team undertook a program of intensive Ada 
training before beginning the actual design work on the dy- 
namics simulator. The training included a training problem 
that proved extremely useful. 

To converge on an appropriate design, it is also essential 
that the team knows different design methods. Most 
programmer/designers in the flight dynamics envi'ronment use 
functional decomposition as their design method. Part of 
the training for the Ada team was in the use of other design 
methodologies. Cherry's PAMELA and Booch's object-oriented 
design methodologies are radically different from the stand- 
ard procedural decomposition used in this environment. Such 
exposure was one source of broader insight into problem- 
solving for the team. To fully exploit Ada's features, var- 
i m s  design methodologies, espsz i a l ly  the m e  to be iised f o r  
the project, must be included in the training; just knowing 
the language is not enough. 

An appropriate design both exploits Ada's features and makes 
implementation easier, and the Ada team found that implemen- 
tation was significantly promoted by their design. It was 
easy for a programmer to code from the design documents, 
even when the coder was not the designer for that section of 
the project. This has an important benefit in that it per- 
mits a buildup of staff during implementation, allowing par- 
allel development. In a project with a tight schedule, 
managers may be able to increase the staffing to minimize 
time. 
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Additional training in Ada design methodology should be con- 
sidered for those in managerial positions so that the man- 
agers will be able to interpret the design notation used 
during design reviews. Such an understanding will enable 
the managers to better assess the design being presented and 
to provide valuable feedback to the design team. 

3.2 REOUIREMENTS AND SPECIFICATIONS 

In the current flight dynamics environment, the specifica- 
tions from which a development team works are heavily biased 
toward FORTRAN. In fact, the high-level design for the sim- 
ulators is actually contained in the specifications docu- 
ment, and this design has not changed for several years. 
Therefore, to really explore the various design methodolo- 
gies, the Ada team found they had to rewrite the specifica- 
tions to remove the bias toward FORTRAN and the whole FORTRAN 
legacy. As previously mentioned, the requirements were re- 
written using the Composite Specification Model. 

It was during this respecification process that the highest 
level of the design began to take shape. Because the prob- 
lem domain lends itself well to an object-oriented view, 
problem-solving proceeded along this line. 

Team members felt that the resulting specifications were 
language neutral. The team had not yet had extensive exper- 
ience with Ada, and this particular specification method 
existed before Ada. New specifications freed the team from 
the FORTRAN-oriented design built into the original specifi- 
cations. One person felt that even the new specifications 
had a design bias built in; however, this bias was toward an 
object-oriented approach, and it was felt that this would 
not limit the development with Ada. 

The team felt that rewriting the specifications increased 
their understanding of the problem more than merely analyz- 
ing the original specifications would have done. One 

3-3 

0 4 4 8  



additional consequence of rewriting the specifications was 
that the team were prevented from postponing some important 
questions until implementation, which would have meant major 
design changes at that point. 

Future projects in which Ada is being considered as the de- 
velopment language should concentrate more effort on the 
original specifications document. Ideally, the requirements 
should be structured in a language-independent form to allow 
the developers more latitude in choosing a design that sat- 
isfies the requirements and makes full use of the features 
of the implementation language. 

It seems clear that new Ada developments will require more 
time during the requirements analysis, specification, and 
design phases. This extra effort should, however, result in 
a deeper understanding of both the problem and solution 
domains, yielding a higher quality product, better documen- 
tation of the earlier phases, and a cost savings during 
testing and maintenance. 

3.3 ADA DESIGN METHODOLOGY 

3.3.1 EARLY SELECTION OF DESIGN METHODOLOGY 

The chances of producing a good Ada design can be greatly 
improved by selecting a design methodology that is appro- 
priate for the type of project and by making this selection 
as early as possible. Selecting a methodology that is 
unsuitable for producing a complete design can result in 
considerable loss of design time. The Ada team spent a s i g -  

nificant amount of time in developing their own methodology, 
which proved quite satisfactory for GRODY, but the develop- 
ment of this methodology extended their design time because 
they were essentially developing the design for both the 
project and the methodology concurrently. 
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3.3.2 EXPLOITATION OF ADA FEATURES THROUGH METHODOLOGY 

If the methodology does not exploit Ada's features, why use 
Ada rather than another language? Many of Ada's benefits 
stem from the portability and maintainability gained by 
using packages, tasks, and generics--central features dis- 
tinguishing Ada from most other languages. 

One of the study objectives was to experiment with various 
design methodologies. The Ada team investigated structural 
decomposition, Cherry's PAMELA, and Booch's object-oriented 
design. They found that structural decomposition did not 
encourage the use of Ada's unique features; that PAMELA, 
which was designed for use with embedded systems, was too 
oriented toward concurrency for this application; and that 
Booch's object-oriented design methodology did not provide 
enough guidelines in its representations for a project of 
this size (it left too much up to the designer's judgment). 

As a result, the team developed their own object-oriented 
methodology that incorporates ideas from both Cherry's and 
Booch's methods. The methodology produces object diagrams 
as the final result of objectldata flow analysis. Two 
orthogonal hierarchies exist: 

0 Parent-child hierarchy (object decomposition) 

0 Seniority hierarchy (an object using the services 
of another is senior to the used object) 

The new object-oriented methodology maps very well into Ada, 
because both were developed with modern software engineering 
concepts in mind (e.g., data abstraction, information hid- 
ing). Objects easily convert to packages, and packages en- 
courage modularity . 
One of the successful results from the design is the modu- 
larity. The team felt that this helped make interfaces 
easier to design, and increased interface reliability is 
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expected at testing. Another important effect of modularity 
in the design is the ease of adding new programmers to the 
project and phasing out others if required. 

Another successful point is that the original design is 
still being followed in implementation, without major 
changes. The changes that have been made are additions. 
The team now feels that not enough attention was given to 
type specifications during design. However, it was felt 
that the object diagrams were helpful as a framework for 
discussing proposed changes. 

3 . 4  DOCUMENTATION OF DESIGN 

3.4.1 USEFULNESS OF OBJECT DIAGRAMS 

Object diagrams are the key type of documentation produced 
by the Ada team's object-oriented methodology. Structure 
charts are the documentation produced with the standard 
FORTRAN design process. 

The lack of a specific methodology at the start of the proj- 
ect was a problem, although unavoidable in this case because 
of the objectives of the study. The representations changed 
over time as the methodology developed, which was a big 
problem because it was difficult to keep the design docu- 
ments consistent. To apply a methodology well, everyone 
needs to know the ground rules at the start. This facili- 
tates understanding between developers on the team and be- 
tween the team and the managers. 

The key issue here is the importance of people's expecta- 
tions. Less precision in structure charts and FORTRAN pres- 
entations at the PDR and CDR is acceptable than would be 
allowed with Ada documentation. Because the representations 
are so different for the Ada documentation, any unspoken 
understandings and intuition are lost. 
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Managers were unable to understand the object diagrams at 
these reviews. They tried to look at them as though they 
were the familiar structure charts, and could not visualize 
the design. Object diagrams contain a high level of detail, 
to express all the relationships they are capable of ex- 
pressing. If some type of modification were made to sup- 
press details of relationships between modules so that some 
relationships could be shown between a greater number of 
modules, the gap between object diagrams and structure 
charts would be lessened. 

Even so, training is needed to make the object diagrams fam- 
iliar to managers and reviewers. Unfamiliarity leads to 
concerns that something is being hidden. In addition, when 
the design is not understood because of the representation, 
the developers get less feedback on their design. 

One clear implication of this experiment is the need for 
educating managers and reviewers in both Ada and the new 
concepts of software engineering. An Ada-oriented develop- 
ment requires a fair amount of knowledge on the part of the 
reviewers. More and different types of information must be 
examined to validate each phase of the life cycle. 

3 . 4 . 2  COMPILABLE DESIGN ELEMENTS 

Another aspect of the design documentation that was investi- 
gated for GRODY is the concept of using compilable design 
elements. Ada itself can work well as a compilable PDL, 
whereas the PDL used with FORTRAN is pseudocode. The ad- 
vantage of compilable PDL is that it permits interface 
checking and type checking, which help ensure the validity 
of the design in a way not otherwise possible at this early 
stage of development. This requires more precision in the 
design process than is required in 
sign process, but it provides more 
during the PDR and CDR. 
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The Ada team developed only a small portion of the PDL for 
GRODY in compilable Ada elements during the design work that 
occurred before the reviews because they did not have enough 
time to do it all. However, they felt that this would have 
been very beneficial and actually did develop these elements 
in early implementation. Most team members felt that this 
activity should normally be considered a part of the design 
phase. 

3.5 DIFFERENCES IN THE DESIGNS 

The resulting FORTRAN and Ada designs were studied to deter- 
mine if there were any real differences between them. Some 
previous experiences using Ada for scientific applications 
had shown that the design developed for the Ada system was 
very similar to a FORTRAN design (References 18 and 19). 
Since considerable effort has been expended during the GRODY 
project to develop an independent design, the question is-- 
Is the design really different? 

An examination of the two designs reveals several differ- 
ences (Figure 3-1). The Ada design does "look" different 
from the FORTRAN design. The Ada design consists of one 
program with five subsystems, whereas the FORTRAN design 
involves three programs: a profile program, which calcu- 
lates the attitude; the simulator, which consists of the 
truth model, the OBC model, and the simulation control 
logic; and the postprocessor program, which analyzes the 
results. The Ada program assigns different functional proc- 
essing to its corresponding subsystems such that the func- 
tions of the FORTRAN profile program are incorporated into 
the Ada truth model. The Ada user interface performs the 
functions of the FORTRAN postprocessor and some of the user 
interaction performed by the FORTRAN simulation control 
program. The simulation support and control functions are 
separated into two Ada subsystems. The Ada OBC subsystem is 
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functionally similar to the FORTRAN OBC subsystem. These 
differences in assignment of functional processing to the 
subsystems result in different data flows between the var- 
ious subsystems. 

In addition to these structural differences, there are two 
fundamental differences in the basic operation of the simu- 
lators. The first is that the FORTRAN simulator operates on 
a "fixed time step** principle, whereas the Ada simulator 
operates on a '*calendar of events" principle. During an 
iteration of the FORTRAN simulator, the simulator control 
program wakes up the truth model, which computes the atti- 
tude state and places the corresponding sensor data in a 
holding area. The trcth model then signals the control pro-  
gram to wake up the OBC subsystem, which obtains the sensor 
data, models the control laws, and generates the actuator 
commands, which are placed in a holding area for the truth 
model to use on the next iteration. The OBC then signals 
the control program to wake up the subsystem that writes out 
the analysis record resulting from this iteration. At the 
completion of this writing, control is returned to the simu- 
lator control program to begin the next iteration. In the 
FORTRAN design, the user sets the cycle time (the amount of 
time that the simulation clock is incremented), and this 
cycle time determines when events occur in the simulation. 
In the Ada design, there is an external timer that causes 
automatic advancement of the scheduler in the OBC so  that 
the cycling of the clock is like that in the actual space- 
craft OBC and is not under user control (Figure 3-2). 

The second'operational difference in the two designs is the 
passive nature of the truth model in the Ada design. The 
Ada OBC subsystem calls the truth model to obtain sensor 
data whenever it is needed. The user can control the cycle 
time in the truth model, but this does not affect the timing 
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in the OBC. More information on the design differences is 
presented in Reference 19. 

muTH 
MODEL 

FORTRAN DESIGN 

OBC SIMULATION 
MODEL OUTPUT 

3.6 

ADA DESIGN 

SIMULATION 
CONTROL 

Figure 3-2. Comparison of FORTRAN and Ada Simulator 
Operations 

CHANGES IN THE DESIGN PHASE OF THE LIFE CYCLE 

The legacy is that the starting point for design is a speci- 
fications document already containing the preliminary de- 
sign. As has been shown, a preliminary design oriented 
toward FORTRAN would severely limit an Ada design because it 
would not take advantage of Ada's unique features. In this 
case, with the specifications rewritten, there was less de- 
sign in the specifications document. However, since the 
document still contained some unfamiliar design, it is un- 
clear exactly where requirements analysis of the specifica- 
tions stopped and the design phase began. 
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The milestones of the design phase may also be different. 
In the usual software life cycle with FORTRAN, the require- 
ments for a PDR and CDR are well defined, and the breaks 
between life-cycle phases seem logical and real. There is, 
however, no direct conversion for Ada, because the new 
object-oriented methodology and its documentation are so 

different from the traditional ones. Again, preliminary 
design seems to fade into detailed design, and detailed de- 
sign fades into coding. It thus seemed that the PDR and CDR 
for the Ada design occurred at arbitrary times rather than 
at logical points in the design process. 

Figure 3-3 shows the level of effort during design in weekly 
or biweekly increments. The Ada team level of effort.shows 
large peaks around the time of the PDR and CDR, indicating 
that the team felt additional effort was necessary to pre- 
pare for these reviews. The FORTRAN team level of effort 
shows a similar peak for the PDR but a much more level curve 
approaching the CDR, with an actual decrease in design ef- 
fort close to the CDR. 

The members of the Ada team held different opinions on how 
well prepared they were for the PDR and CDR. One team mem- 
ber in particular felt more prepared than usual because he 
understood the design and its implications so well. Others 
felt less prepared than usual because of the newness of the 
methodology and representations and because they were unsure 
how to map the state of the design into the format generally 
expected at the PDR and CDR. 

The concept of having two reviews seems to be desirable when 
designing in Ada, but it appears that the timing of these 
reviews should be different. For example, the PDR could 
occur later than normal, but with more rigor. The PDR could 
be represented by high-level compilable design elements, and 
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CDRs might be staged for different design elements by exam- 
ining more detailed Ada PDL pieces. The specific design 
products to be completed during each design phase should be 
defined for future Ada development projects. Figure 3-4 

shows the differences in schedule between the two projects; 
requirements analysis, design, and implementation all took 
longer for the Ada project. Some Ada team members felt that 
design efforts continued into implementation and that a 
longer design phase would be helpful. It is hoped that the 
additional time spent in design will result in less time 
spent for the remaining phases. 

REQTS. 
ANALY- 

SIS 

DESIGN IMPLEMENTATION s ~ ~ ~ ~ M  
FORTRAN 

TEAM 
' 

IMPLEMENTATION 

I I I I I I I 

TEAM a1 I 0 4  ai i a2 I a 4  
ADA 

I I I 1 I I I 1 I 

1 s  1988 1987 

Figure 3-4 .  FORTRAN and Ada Team Schedules (Effort Levels 
Vary) 

3.7 STAFFING CONSIDERATIONS 

Because the development of GRODY was a new venture in the 
flight dynamics environment, the team assigned from the 
start of the project was the size team that would normally 
be used on this type of project during the implementation 
phase. This was done to train the team as a whole from the 
very beginning, since there was very little Ada expertise 
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available in this environment. From a training point of 
view, it was quite successful to have the whole team 
together from the initial phases of the project. However, 
during the requirements analysis phase, it was felt that a 
smaller initial team would have been able to perform more 
efficiently. The larger team size resulted in more time 
being spent in meetings. 

The size of the team during the design phase was also larger 
than normal for the design of a project this size in the 
flight dynamics environment. This larger team was needed 
because the amount of design work done on GRODY was greater; 
the top-level design was actually done using three different 
methodologies. Even considering this, a future project 
might want to consider a larger design staff, since it seems 
to take longer to develop a complete Ada design. A complete 
Ada design does, however, describe the system better than a 
corresponding FORTRAN design because there are more expres- 
sible relationships (exception handling, etc.) and more de- 
sign validation is possible (type checking, interface 
checking, etc.). 

Future Ada development projects might benefit from using a 
smaller team initially and then building up during design 
and through implementation. This follows the type of staff- 
ing profile currently used on FORTRAN projects. As more 
people become familiar with Ada and its methodologies, it 
will be easier for them to join such a project during its 
later phases. As already noted, the object-oriented design 
produces a type of design that can be picked up and imple- 
mented by a coder who was not involved with the design. 

3.8 COST OF USING NEW DESIGN 

One important factor when considering a changeover to Ada 
and the new type of design that Ada implies is the real cost 
of such a change. In the flight dynamics environment, using 
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the type of design that takes full advantage of Ada's bene- 
fits means the loss of the whole FORTRAN legacy. This 
legacy includes old specifications, old design, old code, 
intuition, and institutional knowledge that is not recorded 
anywhere. Developing such a legacy for Ada takes time and 
costs money. Continuing observations of this project and 
future similar projects will provide more insight into the 
question of the value of Ada's benefits when compared to the 
cost of the changeover. 

3.9 COST OF TRANSITIONING TO ADA AT DIFFERENT LIFE-CYCLE 
PHASES 

Another factor influencing the cost of transitioning from 
FORTRAN to Ada is the point in the life cycle at which the 
change from FORTRAN development methods to Ada development 
methods occurs. The alternatives and their consequences are 
as follows: 

Alternative Conseauence 

Ada at project start 

Ada after requirements 
analysis 
Ada after design 

Best opportunity to cast 
requirements in a more 
language-neutral form 
Effective only if FORTRAN 
legacy is remnved 
P r ocedu r a 1 "Ad at r an " 

Source language conversion Maintenance problems 

This experiment chose to consider Ada as the development 
language from the beginning of the project. This seems to 
be the ideal situation because it provides the best oppor- 
tunity to cast the requirements in a more language-neutral 
form. The developers are then free to develop the best pos- 
sible design, based on both satisfaction of the requirements 
and efficient use of the development language. 

The decision to use Ada could have been postponed until 
after a traditional requirements analysis phase. Based on 
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the experience gained during the GRODY project, such a deci- 
sion would probably be effective only if the requirements 
had been written in a language-independent form before re- 
quirements analysis. Otherwise, the development team has 
two choices: First, they would need to spend additional 
time removing any previous language legacy from the require- 
ments before any real design efforts could begin. Second, 
they would be constrained in their design choices by design 
features already ingrained in the requirements document. 
The first choice would result in a better Ada system but 
would cost more because of the additional time required to 
recast the requirements. The second choice would result in 
a design that might not be well suited for an Ada implemen- 
tation and could result in a less reliable system that is 
more difficult to maintain. 

If the change to Ada is made after the design phase is com- 
pleted, the consequences are similar to the second choice 
but are even more pronounced. The design would certainly 
.not be based on effective use of Ada's features and would 
not be able to use any of Ada's language-specific features. 
This would result in an "Adatran" program, that is, a pro- 
gram developed in Ada that iooks just like a FORTRAN pro- 
gram. Such a program would lose any design advantages Ada 
might have offered, and the reliability and maintainability 
of the system could be affected. The cost of a conversion 
to Ada after design would thus be the increased cost of 
maintenance. 

The last possibility to be considered is a decision to 
change to Ada after implementation in another language, 
probably FORTRAN. This would again result in an "Adatran" 
type of program that would be even less desirable than the 
previous case. When Ada is the original implementation lan- 
guage, certain design modifications or interpretations would 
probably be applied to make the design more suitable for 
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Ada. But in the case of source language conversion, none of 
this modification is practical, and the result would prob- 
ably be the use of only a limited set of Ada's features. In 
addition, some of the features used might need to be molded 
to fit FORTRAN capabilities that did not quite correspond to 
the nearest Ada equivalent. Such changes would certainly 
result in a loss of reliability and an increase in mainte- 
nance problems. According to the SEL figures (Reference 2), 
the annual cost of error correction and maintenance usually 
ranges from 10 to 35 percent of the original development 
cost, so an increase in these percentages would be expensive. 

Based on the experience gained during the GRODY project, it 
seems that the,best time to transition to Ada is at the 
start of the project--even before the requirements and spec- 
ifications are developed. This seems to be the only way to 
produce an Ada system that is efficient in its use of Ada 
and that can take advantage of Ada's features for increased 
portability and maintainability. 
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SECTION 4 - SUMMARY AND RECOMMENDATIONS 

What have we learned from the design phase of GRODY, and 
where do we go from here? In response to the first ques- 
tion, the conclusions reached can be summarized as follows: 

1. Training is important. 

a. A team designing a project to be implemented 
in Ada should be trained not only in Ada, but 
in several different design methodologies in 
addition to the one to be used on the project. 

b. Managers and reviewers should have some train- 
ing in the design methodology to be used, to 
better evaluate the design and provide more 
useful feedback. 

2. The specification method should not constrain the 
design. The requirements document should be lan- 
guage neutral and should not contain a bias toward 
any particular design method. 

3 .  Methodology is important. 

a. The design methodology should be chosen as 

early as possible so that the team can be 
trained and valuable time will not be wasted 
trying to use an unsuitable methodology. 

b. The methodology chosen should exploit Ada's 
features (e.g., packages, task, and generics). 

c. Object diagram methodology seems to be an ex- 
tremely useful method for developing the de- 
sign for the type of project encountered in 
the flight dynamics environment. 
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4 .  Documentation of an Ada design requires different 
design products than are used to describe a FORTRAN 
design. 

a. Object diagrams were a very suitable represen- 
tation for the GRODY design. 

b. Compilable design elements developed in Ada 
are very useful for providing validation of 
the design as well as for documentation. 

5 .  Designing with Ada may imply different starting and 
ending points of the design phase. 

6. It costs money to make a changeover to a new design 
and discard all the previous legacy associated with 
all phases of a FORTRAN development. 

In response to the second question--Where do we go from 
here?--the following recommendations can be made for future 
projects. It seems wise to modify the usual software life 
cycle when developing with Ada by expanding the design phase 
to allow more time for design. The PDR and CDR should be 
retained but should occur at different points in the life 
cycle. 

The PDR should occur later in the design phase and should 
include descriptions of the high-level elements and their 
input/output interfaces. These high-level elements could be 
well represented by using object diagrams. The description 
of these elements should be completed with compilable PDL. 
The CDR would then include a description of the more de- 
tailed design elements. 

Continued study of GRODY and similar projects in the future 
will determine the suitability of Ada in the flight dynamics 
environment and will determine if the advantages gained by 
the use of Ada will outweigh the loss of the FORTRAN legacy. 
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GLOSSARY 

CDR 
csc 
CSM 
GRO 
GRODY 
GSFC 
NASA 
OBC 
OOD 

PAM 

PAMELA 

PDL 

PDR . 
SEL 
SLOC 

critical design review 
Computer Sciences Corporation 
Composite Specification Model 
Gamma Ray Observatory 
Gamma Ray Observatory Dynamics Simulator 
Goddard Space Flight Center 
National Aeronautics and Space Administration 
onboard computer 
object-oriented design 
Process Abstraction Method 
Process Abstraction Method for Embedded Large 
Applications 
program design language 
preliminary design review 
Software Engineering Laboratory 
source lines of code 
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